Community

AES Conference Papers Forum

Enhanced Perceptual Rub & Buzz Measurement for Testing Automotive Speakers

Document Thumbnail

Loudspeaker Rub & Buzz faults are a problem for automotive manufacturers as they sound harsh and immediately give the perception of poor quality. There are two places such faults can occur - during speaker manufacturing and installation of the speaker in the car. A buzzing loudspeaker in a car is disappointing to a customer and is costly to replace. It is also challenging for a service center to determine exactly where the buzzing is coming from and whether it is caused by a faulty loudspeaker or bad installation. Perceptual distortion measurements are often considered the holy grail of end-of-line testing because rejecting speakers with only audible faults increases yield. Although such measurements have been around since 2011, production line adoption has been slow because until now, sensitivity to background noise has made limit-setting challenging. In this paper, a new algorithm is introduced that uses advanced technology to reduce the impact of background noise on the measurement and offer more repeatable results. This facilitates limit setting on the production line and makes it a truly viable production line metric for increasing yield. This same metric may also be used for end-of-line automotive quality control tests. Results from various algorithms will be shown, and their correlation to subjective and other non-perceptual distortion metrics explained.

Authors:
Affiliation:
AES Conference:
Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society