Community

AES Conference Papers Forum

Bag-of-Features Models Based on C-DNN Network for Acoustic Scene Classification

Document Thumbnail

This work proposes bag-of-features deep learning models for acoustic scene classi?cation (ASC) – identifying recording locations by analyzing background sound. We explore the effect on classi?cation accuracy of various front-end feature extraction techniques, ensembles of audio channels, and patch sizes from three kinds of spectrogram. The back-end process presents a two-stage learning model with a pre-trained CNN (preCNN) and a post-trained DNN (postDNN). Additionally, data augmentation using the mixup technique is investigated for both the pre-trained and post-trained processes, to improve classi?cation accuracy through increasing class boundary training conditions. Our experiments on the 2018 Challenge on Detection and Classi?cation of Acoustic Scenes and Events - Acoustic Scene Classi?cation (DCASE2018-ASC) subtask 1A and 1B signi?cantly outperform the DCASE2018 reference implementation and approach state-of-the-art performance for each task. Results reveal that the ensemble of multi-spectrogram features and data augmentation is bene?cial to performance.

Authors:
Affiliations:
AES Conference:
Paper Number:
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society