AES Conference Papers Forum

A Dataset and Method for Guitar Solo Detection in Rock Music

Document Thumbnail

This paper explores the problem of automatically detecting electric guitar solos in rock music. A baseline study using standard spectral and temporal audio features in conjunction with an SVM classifier is carried out. To improve detection rates, custom features based on predominant pitch and structural segmentation of songs are designed and investigated. The evaluation of different feature combinations suggests that the combination of all features followed by a post-processing step results in the best accuracy. A macro-accuracy of 78.6% with a solo detection precision of 63.3% is observed for the best feature combination. This publication is accompanied by release of an annotated dataset of electric guitar solos to encourage future research in this area

AES Conference:
Paper Number:
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society