Community

AES Conference Papers Forum

Speaker Identification for Swiss German with Spectral and Rhythm Features

Document Thumbnail

We present results of speech rhythm analysis for automatic speaker identification. We expand previous experiments using similar methods for language identification. Features describing the rhythmic properties of salient changes in signal components are extracted and used in an speaker identification task to determine to which extent they are descriptive of speaker variability. We also test the performance of state-of-the-art but simple-to-extract frame-based features. The paper focus is the evaluation on one corpus (swiss german, TEVOID) using support vector machines. Results suggest that the general spectral features can provide very good performance on this dataset, whereas the rhythm features are not as successful in the task, indicating either the lack of suitability for this task or the dataset specificity.

Authors:
Affiliations:
AES Conference:
Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society