A method is presented for soundfield navigation through estimation of the spherical harmonic coefficients (i.e., the higher-order ambisonics signals) of a soundfield at a position within an array of two or more ambisonics microphones. An existing method based on blind source separation is known to suffer from audible artifacts, while an alternative method, in which a weighted average of the ambisonics signals from each microphone is computed, is shown to necessarily introduce comb-filtering and degrade localization for off-center sources. The proposed method entails computing a regularized least-squares estimate of the soundfield at the listening position using the signals from the nearest microphones, excluding those that are nearer to a source than to the listening position. Simulated frequency responses and predicted localization errors suggest that, for interpolation between a pair of microphones, the proposed method achieves both accurate localization and minimal spectral coloration when the product of angular wavenumber and microphone spacing is less than twice the input expansion order. It is also demonstrated that failure to exclude from the calculation those microphones that are nearer to a source than to the listening position can significantly degrade localization accuracy.
Authors:
Tylka, Joseph G.; Choueiri, Edgar
Affiliation:
Princeton University, Princeton, NJ, USA
AES Conference:
2016 AES International Conference on Audio for Virtual and Augmented Reality (September 2016)
Paper Number:
4-2
Publication Date:
September 21, 2016
Subject:
Capture, Rendering, and Mixing for VR
Download Now (726 KB)
This paper is Open Access which means you can download it for free.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.