AES Conference Papers Forum

Adaptive Equalization of Acoustic Transparency in an Augmented-Reality Headset

Document Thumbnail

Headphones are commonly used in noisy environments. Insert headphones attenuate and color the spectra of ambient sounds and thus alter the auditory perception. When the ambient sounds are desirable, a hear-through function can be used to reproduce them naturally while wearing headphones, i.e. to make the headphones acoustically transparent. A novel adaptive hear-through algorithm is proposed, which estimates the isolation and fine-tunes the hear-though equalization for optimal acoustic transparency. Measurements on a prototype headset and simulations show that the proposed algorithm produces acoustic transparency with default settings when the fit is good, and that the adaptation improves the transparency by up to 6 dB when the headset is poorly fitted. Volume control with additional shelving filter adjustments reduces the comb-filtering effect at frequencies below 1 kHz. The proposed algorithm is a suitable premise for augmented reality audio applications and offers improved behavior when compared to fixed hear-through systems.

AES Conference:
Paper Number:
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society