Community

AES Conference Papers Forum

Computationally efficient simulation of crowd sounds in an Ambisonics listening room

Document Thumbnail

A listening room equipped with an Ambisonics-capable sound system has been designed and implemented within our premises to serve as a design aid. Among other uses, the system is employed to illustrate audio ambiances associated with a large number of persons talking in a confined space such as a bar. These simulations are made computationally efficient by using a low number of distributed virtual sound sources (each playing back a recording of several simultaneous talkers) that are positioned at optimized locations in the modelled space. The choice of the virtual sound source locations is informed by previous research where the relation between the sound field diffusive characteristics and perceived location of auditory events is investigated (see e.g., P.Novo, “Aspects of Hearing and Reproduction of Diffuse Sound Fields and Extended Sound Sources” Proc. ICA 2004, Kyoto; P.Novo “Speech Generated by Crowds: A spatial Analysis”, Proc. ICSV13, Vienna, 2006). Results of tests undertaken to assert the relation between the number and location of virtual sound sources, sound field diffusive characteristics and plausibility of the simulations are presented and discussed.

Authors:
Affiliation:
AES Conference:
Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society