Community

AES Conference Papers Forum

Fast measurement system for spatially continuous individual HRTFs

Document Thumbnail

The head-related transfer functions (HRTFs) play a major role for the auralization of virtual sources around the listener as well as for cross-talk cancellation systems. Generic HRTFs of artificial heads are often used, as measuring individuals using a high spatial resolution is usually time-consuming and tedious. A fast measurement system for HRTFs is presented, consisting of a circular arc of 40 broadband loudspeakers placed on the elevations of a Gaussian grid. By rotating the subject horizontally (either in discrete steps or continuously) HRTFs can be acquired on a spherical surface. Using an optimized version of the multiple exponential sweep technique [Majdak 2007], thousands of discrete points can be measured within a few minutes making the use of individual HRTFs well feasible in practice. This measurement data is used to obtain a spatially continuous representation of the HRTFs by using a reciprocal formulation as modal components of an outgoing spherical wave. The assumed acoustical centre of the wave is varied in order to get a best possible reconstruction for a finite order of spherical harmonics coefficients. This results in a setup independent and compact description of individual HRTFs, allowing to evaluate the binaural transfer functions for any point in near-field or far-field.

Authors:
Affiliation:
AES Conference:
Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society