Community

AES Conference Papers Forum

Localization of Audio Objects in Multichannel Reproduction Systems

Document Thumbnail

With spatial audio systems the illusion of being in a sound scene should be created, which means to reproduce a natural sound field enveloping the listener. Perceived audio quality is related to the position of the listener in the reproduction room. Former studies indicated that with increased number of loudspeakers for reproduction a larger listening area with high audio quality can be created. In these studies quality was mostly assessed in terms of overall quality or basic audio quality; different factors like distortion, coloration, envelopment and localization were not assessed separately. The new MPEG-H standard should enable high efficiency coding and media delivery in heterogeneous environments. Part 3of MPEG-H deals with the coding and delivery of high-quality 3D audio content, whereas for the producer the number of loudspeaker channels used for reproduction is unknown and flexible. In MPEG the overall audio quality was used for selection of most suitable coding and rendering algorithm. In addition to the MPEG testing and selection process, we conducted a study on localization performance dependent on listener position, number of loudspeakers and rendering algorithms. A new test method with an innovative testing framework was applied, reducing the influence of visual cues during testing. This method was used to evaluate three different rendering schemes and different loudspeaker setups at three different listening positions. The results showed that reproduction via 22 loudspeakers gives a better localization accuracy compared to 10 and 5 channels. More interestingly, a clear shift of the perceived position of sound objects to the right was observed. In former studies, where the loudspeakers where visible, such a shift could not be observed. This might support our assumption that the vision highly influences the localization perception and therefore listening tests without visual cues are required.

Authors:
Affiliations:
AES Conference:
Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society