Community

AES Conference Papers Forum

ESPRIT in Gabor Frames

Document Thumbnail

This articles tackles the estimation of mode parameters in recorded sounds of resonant objects. High resolution methods such as the ESPRIT method have already proved to be of great use for this sort of purpose. However, these methods being model-sensitive, their application to real-life audio signals can lead to results that are not satisfactory enough for a consistent re-synthesis. This is especially the case when the computational cost makes it impossible to analyse the signal in totality, or when the signal presents a high number of components. Significant improvements have already been achieved by decomposing the signal into several sub-band filtered versions, and by applying the ESPRIT algorithm on each of the resulting signals. It is shown in this article that the ESPRIT algorithm can be efficiently applied on time-frequency representations of the signal obtained using Gabor frames. Numerical tests that highlight the advantages of such an approach are also detailed. In addition to the advantages offered by the sub-band approach, the solid Gabor frame formalism combined with the ESPRIT method allows a exible and sharp analysis on selected regions of the time-frequency plane, and leads to re-synthesis which are perceptually very close to the original sounds.

Authors:
Affiliation:
AES Conference:
Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society