Sparse representations have proved a very useful tool in a variety of domain, e.g. speech/music source separation. As strictly sparse representations (in the sense of l0) are often impossible to achieve, other ways of studying signals sparsity have been proposed. In this paper, we revisit the irrelevance filtering analysis-synthesis approach proposed in (Balazs et al., IEEE Trans. ASLP, 18(1), 2010), where the TF coefficients that are below some masking threshold are set to zero. Instead of using the Gabor transform and a specific psychoacoustic model, we use tools directly inspired from perceptual audio coding, for instance MPEG-AAC. We show that significantly better "sparsification performances" are obtained on music signals, at lower computational cost. We then apply the sparsification process to the informed source separation (ISS) problem and show that it enables to significantly decrease the computational cost at the ISS decoder.
Authors:
Pinel, Jonathan; Girin, Laurent
Affiliation:
Grenoble Institute of Technology, Grenoble, France
AES Conference:
42nd International Conference: Semantic Audio (July 2011)
Paper Number:
4-4
Publication Date:
July 22, 2011
Subject:
Informed Source Separation
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.