We have investigated the possibility of separating signals from a single mixture of sources. This problem is termed the Monaural Separation Problem. Lars Kai Hansen has argued that this problem is topological tougher than problems with multiple recordings. Roweis has shown that inference from a Factorial Hidden Markov Model, with non-stationary assumptions on the source autocorrelations modelled through the Factorial Hidden Markov Model, leads to separation in the monaural case. By extending Hansens work we find that Roweis' assumptions are necessary for monaural speech separation. Furthermore we develop a Factorial hierarchical vector quantizer yielding a significant decrease in complexity of inference.
Authors:
Pontoppidan, Niels H.; Dyrholm, Mads
Affiliation:
Technical University of Denmark, Informatics and Mathematical Modelling, Lyngby, Denmark
AES Conference:
23rd International Conference: Signal Processing in Audio Recording and Reproduction (May 2003)
Paper Number:
6
Publication Date:
May 1, 2003
Subject:
Signal Processing in Audio Recording and Reproduction
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.