Journal Forum

Reflecting on Reflections - June 2014
4 comments

Audibility of a CD-Standard A/DA/A Loop Inserted into High-Resolution Audio Playback - September 2007
10 comments

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Access Journal Forum

AES Conference Papers Forum

Low Frequency Room Excitation using Distributed Mode Loudspeakers

Conventional pistonic loudspeakers excite the modes of an enclosed sound field in such a way as to introduce modal artefacts which may be problematic for listeners to high-quality reproduced sound [1]. Their amelioration may involve the use of highly space-consumptive passive absorptive devices or active control techniques [eg 2,3,4]. Other approaches have concentrated on the design of the driver used to excite the room. Distributed sources ranging from the dipole [5] to more complex configurations [6] may be expected to interact with the room eigenvectors in a complicated manner which may be optimised in terms of the spatial and frequency-domain variance of the soundfield. Recent interest in distributed sources has centred on the Distributed Mode Loudspeaker (DML), and this paper reports an investigation into the interaction of DMLs with modal soundfields. It is shown that large DMLs may be expected to modify the low-frequency soundfield. Producing useful low-frequency control remains difficult but may be achieved in some circumstances.

Authors:
Affiliation:
AES Conference:
Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society